
FASTER COMPUTATION OF ISOGENIES

OF LARGE PRIME DEGREE

DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

Dedicated to the memory of Peter Lawrence Montgomery

Abstract. Let E/Fq be an elliptic curve, and P a point in E(Fq) of prime
order `. Vélu’s formulæ let us compute a quotient curve E ′ = E/〈P 〉 and

rational maps defining a quotient isogeny φ : E → E ′ in Õ(`) Fq-operations,

where the Õ is uniform in q. This article shows how to compute E ′, and φ(Q)

for Q in E(Fq), using only Õ(
√
`) Fq-operations, where the Õ is again uniform

in q. As an application, this article speeds up some computations used in the

isogeny-based cryptosystems CSIDH and CSURF.

1. Introduction

Let E be an elliptic curve over a finite field Fq of odd characteristic, and let P be
a point in E(Fq) of order n. The point P generates a cyclic subgroup G ⊆ E(Fq), and
there exists an elliptic curve E ′ over Fq and a separable degree-n quotient isogeny

φ : E −→ E ′ with kerφ = G = 〈P 〉 ;

the isogeny φ is also defined over Fq. We want to compute φ(Q) for a point Q in
E(Fq) as efficiently as possible.

If n is composite, then we can decompose φ into a series of isogenies of prime
degree. Computationally, this assumes that we can factor n, but finding a prime
factor ` of n is not a bottleneck compared to the computation of an `-isogeny by
the techniques considered here. We thus reduce to the case where n = ` is prime.

Vélu introduced formulæ for φ and E ′ (see [53] and [36, §2.4]): for E defined by
y2 = x3 + a2x

2 + a4x+ a6 and ` ≥ 3, we have

φ : (X,Y) 7−→
(

ΦG(X)

ΨG(X)2
,
Y ΩG(X)

ΨG(X)3

)
where

ΨG(X) =
∏(`−1)/2
s=1

(
X − x([s]P)

)
,

ΦG(X) = 4(X3 + a2X
2 + a4X + a6)(Ψ′G(X)2 −Ψ′′G(X)ΨG(X))

− 2(3X2 + 2a2X + a4)Ψ′G(X)Ψ(X) + (`X −
∑`−1
s=1 x([s]P))ΨG(X)2 ,

ΩG(X) = Φ′G(X)ΨG(X)− 2ΦG(X)Ψ′G(X) .

Date: 2020.03.20.
Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/

CultureStatement04.pdf. Part of this work was carried out while the first author was visiting the
Simons Institute for the Theory of Computing. This work was supported by the Cisco University

Research Program, by DFG Cluster of Excellence 2092 “CASA: Cyber Security in the Age of Large-
Scale Adversaries”, and by the U.S. National Science Foundation under grant 1913167. “Any opin-
ions, findings, and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science Foundation” (or other fund-
ing agencies). Permanent ID of this document: 44d5ade1c1778d86a5b035ad20f880c08031a1dc.

1

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

The obvious way to compute φ(Q) is to compute the rational functions shown
above, i.e., to compute the coefficients of the polynomials ΨG,ΦG,ΩG; and then

evaluate those polynomials. This takes Õ(`) operations. (If we need the defining
equation of E ′, then we can obtain it by evaluating φ(Q) for a few Q outside
G, possibly after extending Fq, and then interpolating a curve equation through
the resulting points. Alternatively, Vélu gives further formulas for the defining
equation.) We emphasize, however, that the goal is not to compute the coefficients
of these functions; the goal is to evaluate the functions at a specified point.

The core algorithmic problem falls naturally into a more general framework: the
efficient evaluation of polynomials and rational functions over Fq whose roots are
values of a function from a cyclic group to Fq.

Fix a cyclic group G (which we will write additively), a generator P of G, and a
function f : G → Fq. For each finite subset S of Z, we define a polynomial

hS(X) =
∏
s∈S

(X − f([s]P)) ,

where [s]P denotes the sum of s copies of P . The kernel polynomial ΨG(x) above
is an example of this, with f = x and S = {1, . . . , (` − 1)/2}. Another example is
the cyclotomic polynomial Φn, where f embeds Z/nZ in the roots of unity of Fq,
and Φn(X) = hS(X) where S = {i | 0 ≤ i < n, gcd(i, n) = 1}. More generally,
if f maps i 7→ ζi for some ζ, then hS(X) is a polynomial whose roots are various
powers of ζ; similarly, if f maps i 7→ iβ for some β, then hS(X) is a polynomial
whose roots are various integer multiples of β.

Given f and S, then, we want to compute hS(α) for any α in Fq. We can
always do this directly in O(#S) Fq-operations. But if S has enough additive
structure, and if f is sufficiently compatible with the group structure on G, then we

can do this in Õ(
√

#S) Fq-operations, as we will see in §2, §3, and §4. Our main
theoretical result is Theorem 4.11, which shows how to achieve this quasi-square-
root complexity for a large class of S when f is the x-coordinate on an elliptic
curve. We apply this to the special case of efficient `-isogeny computation in §5.
We discuss applications in isogeny-based cryptography in §6.

Most of this paper focuses on asymptotic exponents, in particular improving

`-isogeny evaluation from cost Õ(`) to cost Õ(
√
`). However, this analysis hides

polylogarithmic factors that can swamp the exponent improvement for small `. In
Appendix A we instead analyze costs for concrete values of `, and ask how large `

needs to be for the Õ(
√
`) algorithms to outperform conventional algorithms.

1.1. Model of computation. We state our framework for Fq for concreteness.

All time complexities are in Fq-operations, with the O and Õ uniform over q.
The ideas are more general. The algorithms here are algebraic algorithms in the

sense of [14], and can further be lifted to algorithms defined over Z[1/2] and in
some cases over Z. In other words, the algorithms are agnostic to the choice of q
in Fq, except for sometimes requiring q to be odd; and the algorithms can also be
applied to more general rings, as long as all necessary divisions can be carried out.

Restricting to algebraic algorithms can damage performance. For example, for
most input sizes, the fastest known algorithms to multiply polynomials over Fq are
faster than the fastest known algebraic algorithms for the same task. This speedup
is only polylogarithmic and hence is not visible at the level of detail of our analysis
(before Appendix A), but implementors should be aware that simply performing a
sequence of separate Fq operations is not always the best approach.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 3

2. Strassen’s deterministic factorization algorithm

As a warmup, we review a deterministic algorithm that provably factors n into

primes in time Õ(n1/4). There are several such algorithms in the literature using
fast polynomial arithmetic, including [50], [10], [21], and [32]; there is also a sep-
arate series of lattice-based algorithms surveyed in, e.g., [4]. Strassen’s algorithm
from [50] has the virtue of being particularly simple, and is essentially the algorithm
presented in this section.

The state of the art in integer factorization has advanced far beyond Õ(n1/4).
For example, ECM [37], Lenstra’s elliptic-curve method of factorization, is plausibly
conjectured to take time no(1). We present Strassen’s algorithm because Strassen’s
main subroutine is the simplest example of a much broader speedup that we use.

2.1. Factorization via modular factorials. Computing gcd(n, `! mod n) reveals
whether n has a prime factor ≤`. Binary search through all ` ≤

√
n then finds the

smallest prime factor of n. Repeating this process completely factors n into primes.
The rest of this section focuses on the problem of computing `! mod n, given

positive integers ` and n. The algorithm of §2.3 uses Õ(
√
`) additions, subtrac-

tions, and multiplications in Z/nZ, plus negligible overhead. For comparison, a

straightforward computation would use `−1 multiplications modulo n. The Õ here
is uniform over n.

2.2. Modular factorials as an example of the main problem. Define G as the
additive group Z, define P = 1, define f : G → Z/nZ as s 7→ s, and define hS(X) =∏
s∈S(X − f([s]P)) ∈ (Z/nZ)[X]. Then, in particular, hS(X) = (X − 1) · · · (X − `)

for S = {1, . . . , `}, and one can compute `! mod n by computing hS(` + 1) or,
alternatively, by computing (−1)`hS(0). This fits the modular-factorials problem,
in the special case that n is a prime number q, into the framework of §1.

2.3. An algorithm for modular factorials. Compute b = b
√
`c, and define

I = {0, 1, 2, . . . , b − 1}. Use a product tree to compute the polynomial hI(X) =
X(X − 1)(X − 2) · · · (X − (b− 1)) ∈ (Z/nZ)[X].

Define J = {b, 2b, 3b, . . . , b2}. Compute hJ(X), and then compute the resultant
of hJ(X) and hI(X). This resultant is hI(b)hI(2b)hI(3b) · · ·hI(b2), i.e., (b2)! mod n.

One can compute the resultant of two polynomials via continued fractions; see,
e.g., [51]. An alternative here, since hJ is given as a product of linear polynomials,
is to use a remainder tree to compute hI(b), hI(2b), . . . , hI(b

2) ∈ Z/nZ, and then

multiply. Either approach uses Õ(
√
`) operations.

Finally, multiply by (b2 + 1)(b2 + 2) · · · ` modulo n, obtaining `! mod n.

3. Evaluation of polynomials whose roots are powers

Pollard [46] introduced a deterministic algorithm that provably factors n into
primes in time O(n1/4+ε). Strassen’s algorithm from [50] was a streamlined version

of Pollard’s algorithm, replacing O(n1/4+ε) with Õ(n1/4).
This section reviews Pollard’s main subroutine, a fast method to evaluate a

polynomial whose roots (with multiplicity) form a geometric progression. For com-
parison, Strassen’s main subroutine is a fast method to evaluate a polynomial whose
roots form an arithmetic progression. See §2.3 above.

3.1. A multiplicative version of modular factorials. Fix ζ ∈ (Z/nZ)∗. Define
G = Z, define P = 1, define f : G → (Z/nZ)∗ as s 7→ ζs, and define hS(X) =∏
s∈S(X − f([s]P)) =

∏
s∈S(X − ζs) ∈ (Z/nZ)[X]. (For comparison, in §2, f was

s 7→ s, and hS(X) was
∏
s∈S(X − s).)

4 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

In particular, hS(X) =
∏`
s=1(X − ζs) for S = {1, 2, 3, . . . , `}. Given α ∈ Z/nZ,

one can straightforwardly evaluate hS(α) for this S using O(`) algebraic operations

in Z/nZ. The method in §3.2 accomplishes the same result using only Õ(
√
`)

operations. The O and Õ are uniform in n, and all of the algorithms here can
take ζ as an input rather than fixing it. There are some divisions by powers of ζ,
but divisions are included in the definition of algebraic operations.

Pollard uses the special case hS(1) =
∏`
s=1(1 − ζs). This is (1 − ζ)` times the

quantity (1 + ζ)(1 + ζ + ζ2) · · · (1 + ζ + · · ·+ ζ`−1). It would be standard to call the
latter quantity a “q-factorial” if the letter “q” were used in place of “ζ”; beware,
however, that it is not standard to call this quantity a “ζ-factorial”. For a vast
generalization of Pollard’s algorithm to q-holonomic sequences, see [9]; in §4, we
will generalize it in a different direction.

3.2. An algorithm for the multiplicative version of modular factorials.
Compute b = b

√
`c, and define I = {1, 2, 3, . . . , b}. Use a product tree to compute

the polynomial hI(X) =
∏b
i=1(X − ζi).

Define J = {0, b, 2b, . . . , (b−1)b}, and use a remainder tree to compute hI(α/ζ
j)

for all j ∈ J . Pollard uses the chirp-z transform [47] (Bluestein’s trick) instead of
a remainder tree, saving a logarithmic factor in the number of operations, and it is
also easy to save a logarithmic factor in computing hI(X), but these speedups are
not visible at the level of detail of the analysis in this section.

Multiply ζjb by hI(α/ζ
j) to obtain

∏b
i=1(α−ζi+j) for each j, and then multiply

across j ∈ J to obtain
∏b2

s=1(α − ζs). Finally, multiply by
∏`
s=b2+1(α − ζs) to

obtain the desired hS(α).

One can view the product
∏b2

s=1(α− ζs) here, like the product (b2)! in §2, as the
resultant of two degree-b polynomials. Specifically,

∏
j hI(α/ζ

j) is the resultant of∏
j(X − α/ζj) and hI ; and

∏
j ζ

jbhI(α/ζ
j) is the resultant of

∏
j(ζ

jX − α) and
hI . One can, if desired, use continued-fraction resultant algorithms rather than
multipoint evaluation via a remainder tree.

3.3. Structures in S and f . We highlight two structures exploited in the above

computation of
∏`
s=1(α − ζs). First, the set S = {1, 2, . . . , `} has enough additive

structure to allow most of it to be decomposed as I + J , where I and J are much
smaller sets. Second, the map s 7→ ζs is a group homomorphism, allowing each ζi+j

to be computed as the product of ζi and ζj ; we will return to this point in §4.1.
We now formalize the statement regarding additive structure, focusing on the Fq

case that we will need later in the paper. First, some terminology: we say that sets
of integers I and J have no common differences if i1 − i2 6= j1 − j2 for all i1 6= i2
in I and all j1 6= j2 in J . If I and J have no common differences, then the map
I × J → I + J sending (i, j) to i+ j is a bijection.

Lemma 3.4. Let q be a prime power. Let ζ be an element of F∗q . Define hS(X) =∏
s∈S(X − ζs) ∈ Fq[X] for each finite subset S of Z. Let I and J be finite subsets

of Z with no common differences. Then

hI+J(X) = ResZ(hI(Z), HJ(X,Z))

where ResZ(·, ·) is the bivariate resultant, and

HJ(X,Z) :=
∏
j∈J

(X − ζjZ).

Proof. ResZ(hI(Z), HJ(X,Z)) =
∏
i∈I
∏
j∈J(X − ζiζj) =

∏
(i,j)∈I×J(X − ζi+j) =

hI+J(X) since the map I × J → I + J sending (i, j) to i+ j is bijective. �

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 5

Algorithm 1 is an algebraic algorithm that outputs hS(α) given α. The algo-
rithm is parameterized by ζ and the set S, and also by finite subsets I, J ⊂ Z
with no common differences such that I + J ⊆ S. The algorithm and the proof
of Proposition 3.5 are stated using generic resultant computation (via continued
fractions), but, as in §2.3 and §3.2, one can alternatively use multipoint evaluation.

Algorithm 1: Computing hS(α) =
∏
s∈S(α− ζs)

Parameters: a prime power q; ζ ∈ F∗q ; finite subsets I, J,K ⊆ Z such that
I and J have no common differences and (I + J) ∩K = {}

Input: α in Fq
Output: hS(α) where hS(X) =

∏
s∈S(X − ζs) and S = (I + J) ∪K

1 hI ←
∏
i∈I(Z − ζi) ∈ Fq[Z]

2 HJ ←
∏
j∈J(α− ζjZ) ∈ Fq[Z]

3 hI+J ← ResZ(hI , HJ) ∈ Fq
4 hK ←

∏
k∈K(α− ζk) ∈ Fq

5 return hI+J · hK

Proposition 3.5. Let q be a prime power. Let ζ be an element of F∗q . Let I, J
be finite subsets of Z with no common differences. Let K be a finite subset of
Z disjoint from I + J . Given α in Fq, Algorithm 1 outputs

∏
s∈S(α − ζs) using

Õ(max(#I,#J,#K)) Fq-operations, where S = (I + J) ∪K.

The Õ is uniform in q. The algorithm can also take ζ as an input, at the cost
of computing ζi for i ∈ I, ζj for j ∈ J , and ζk for k ∈ K. This preserves the time

bound if the elements of I, J,K have Õ(max(#I,#J,#K)) bits.

Proof. Since S \ K = I + J , we have hS(α) = hI+J(α) · hK(α), and Lemma 3.4

shows that hI+J(α) = ResZ(hI(Z), HJ(α,Z)). Line 1 computes hI(Z) in Õ(#I)

Fq-operations; Line 2 computes HJ(α,Z) in Õ(#J) Fq-operations; Line 3 computes

hI+J(α) in Õ(max(#I,#J)) Fq-operations; and Line 4 computes hK(α) in Õ(#K)

Fq-operations. The total is Õ(max(#I,#J,#K)) Fq-operations. �

3.6. Optimization. The best conceivable case for the time bound in Proposi-

tion 3.5, as a function of #S, is Õ(
√

#S). Indeed, #S = #I · #J + #K, so

max(#I,#J,#K) ≥
√

#S + 1/4− 1/2.

To reach Õ(
√

#S) for a given set of exponents S, we need sets I and J with
no common differences such that I + J ⊆ S with #I, #J , and #(S \ (I + J)) in

Õ(
√

#S). Such I and J exist for many useful sets S. Example 3.7 shows a simple
form for I and J when S is an arithmetic progression.

Example 3.7. Suppose S is an arithmetic progression of length n: that is,

S = {m,m+ r,m+ 2r, . . . ,m+ (n− 1)r}
for some m and some nonzero r. Let b = b

√
nc, and set

I := {ir | 0 ≤ i < b} and J := {m+ jbr | 0 ≤ j < b} ;

then I and J have no common differences, and I + J = {m+ kr | 0 ≤ k < b2}, so

I + J = S \K where K = {m+ kr | b2 ≤ k < n} .
Now #I = #J = b, and #K = n − b2 ≤ 2b, so we can use these sets to compute

hS(α) in Õ(b) = Õ(
√
n) Fq-operations, following Proposition 3.5. (In the case

r = 1, we recognise the index sets driving Shanks’ baby-step giant-step algorithm.)

6 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

4. Elliptic resultants

The technique in §3 for evaluating polynomials whose roots are powers is well
known. Our main theoretical contribution is to adapt this to polynomials whose
roots are functions of more interesting groups: in particular, functions of elliptic-
curve torsion points. The most important such function is the x-coordinate. The
main complication here is that, unlike in §3, the function x is not a homomorphism.

4.1. The elliptic setting. Let E/Fq be an elliptic curve, let P ∈ E(Fq), and define
G = 〈P 〉. Let S be a finite subset of Z. We want to evaluate

hS(X) =
∏
s∈S

(X − f([s]P)) , where f : Q 7−→

{
0 if Q = 0 ,

x(Q) if Q 6= 0 ,

at some α in Fq. Here x : E → E/〈±1〉 ∼= P1 is the usual map to the x-line.
Adapting Algorithm 1 to this setting is not a simple matter of replacing the

multiplicative group with an elliptic curve. Indeed, Algorithm 1 explicitly uses
the homomorphic nature of f : s 7→ ζs to represent the roots ζs as ζiζj where
s = i+ j. This presents an obstacle when moving to elliptic curves: x([i+ j]P) is
not a rational function of x([i]P) and x([j]P), so we cannot apply the same trick of
decomposing most of S as I + J before taking a resultant of polynomials encoding
f(I) and f(J).

This obstacle does not matter in the factorization context. For example, in §3,
a straightforward resultant

∏
i,j(α/ζ

j − ζi) detects collisions between α/ζj and

ζi; our rescaling to
∏
i,j(α− ζi+j) was unnecessary. Similarly, Montgomery’s FFT

extension [41] to ECM computes a straightforward resultant
∏
i,j(x([i]P)−x([j]P)),

detecting any collisions between x([i]P) and x([j]P); this factorization method does
not compute, and does not need to compute, a product of functions of x([i+ j]P).
The isogenies context is different: we need a product of functions of x([i+ j]P).

Fortunately, even if the x-map is not homomorphic, there is an algebraic relation
between x(P), x(Q), x(P + Q), and x(P − Q), which we will review in §4.2. The
introduction of the difference x(P − Q) as well as the sum x(P + Q) requires us
to replace the decomposition of most of S as I + J with a decomposition involving
I + J and I − J , which we will formalize in §4.5. We define the resultant required
to tie all this together and compute hI±J(α) in §4.8.

4.2. Biquadratic relations on x-coordinates. Lemma 4.3 recalls the general
relationship between x(P), x(Q), x(P + Q), and x(P − Q). Example 4.4 gives
explicit formulæ for the case that is most useful in our applications.

Lemma 4.3. Let q be a prime power. Let E/Fq be an elliptic curve. There exist
biquadratic polynomials F0, F1, and F2 in Fq[X1, X2] such that

(X − x(P +Q))(X − x(P −Q)) = X2 +
F1(x(P), x(Q))

F0(x(P), x(Q))
X +

F2(x(P), x(Q))

F0(x(P), x(Q))

for all P and Q in E such that 0 /∈ {P,Q, P +Q,P −Q}.

Proof. The existence of F0, F1, and F2 is classical (see e.g. [15, p. 132] for the Fi for
Weierstrass models); indeed, the existence of such biquadratic systems is a general
phenomenon for theta functions of level 2 on abelian varieties (see e.g. [44, §3]). �

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 7

Example 4.4 (Biquadratics for Montgomery models). If E is defined by an affine
equation By2 = x(x2 +Ax+ 1), then the polynomials of Lemma 4.3 are

F0(X1, X2) = (X1 −X2)2 ,

F1(X1, X2) = −2((X1X2 + 1)(X1 +X2) + 2AX1X2) ,

F2(X1, X2) = (X1X2 − 1)2 .

The symmetric triquadratic polynomial (X0X1−1)2 +(X0X2−1)2 +(X1X2−1)2−
2X0X1X2(X0 +X1 +X2 + 2A)− 2 is X2

0F0(X1, X2) +X0F1(X1, X2) +F2(X1, X2).

4.5. Index systems. In §3, we represented most of S as I+J ; requiring I and J to
have no common differences ensured this representation had no redundancy. Now
we will represent most elements of S as elements of (I + J)∪ (I − J), so we need a
stronger restriction on I and J to avoid redundancy.

Definition 4.6. Let I and J be finite sets of integers.

(1) We say that (I, J) is an index system if the maps I × J → Z defined by
(i, j) 7→ i+ j and (i, j) 7→ i− j are both injective and have disjoint images.

(2) If S is a finite subset of Z, then we say that an index system (I, J) is an
index system for S if I + J and I − J are both contained in S.

If (I, J) is an index system, then the sets I + J and I − J are both in bijection
with I × J . We write I ± J for the union of I + J and I − J .

Example 4.7. Let m be an odd positive integer, and consider the set

S = {1, 3, 5, . . . ,m}
in arithmetic progession. Let

I := {2b(2i+ 1) | 0 ≤ i < b′} and J := {2j + 1 | 0 ≤ j < b}
where b = b

√
m+ 1/2c; b′ = b(m+ 1)/4bc if b > 0; and b′ = 0 if b = 0. Then (I, J)

is an index system for S, and S \ (I ± J) = K where K = {4bb′ + 1, . . . ,m− 2,m}.
If b > 0 then #I = b′ ≤ b+ 2, #J = b, and #K ≤ 2b− 1.

4.8. Elliptic resultants. We are now ready to adapt the results of §3 to the setting
of §4.1. Our main tool is Lemma 4.9, which expresses hI±J as a resultant of smaller
polynomials.

Lemma 4.9. Let q be a prime power. Let E/Fq be an elliptic curve. Let P be an
element of E(Fq). Let n be the order of P . Let (I, J) be an index system such that
I, J , I + J , and I − J do not contain any elements of nZ. Then

hI±J(X) =
1

∆I,J
· ResZ (hI(Z), EJ(X,Z))

where

EJ(X,Z) :=
∏
j∈J

(
F0(Z, x([j]P))X2 + F1(Z, x([j]P))X + F2(Z, x([j]P))

)
and ∆I,J := ResZ (hI(Z), DJ(Z)) where DJ(Z) :=

∏
j∈J F0(Z, x([j]P)).

Proof. Since (I, J) is an index system, I + J and I − J are disjoint, and therefore
we have hI±J(X) = hI+J(X) · hI−J(X). Expanding and regrouping terms, we get

hI±J(X) =
∏

(i,j)∈I×J

(X − x([i+ j]P)) (X − x([i− j]P))

=
∏
i∈I

∏
j∈J

(
X2 +

F1(x([i]P), x([j]P))

F0(x([i]P), x([j]P))
X +

F2(x([i]P), x([j]P))

F0(x([i]P), x([j]P))

)

8 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

by Lemma 4.3. Factoring out the denominator, we find

hI±J(X) =

∏
i∈I EJ(X,x([i]P))∏

i∈I
∏
j∈J F0(x([i]P), x([j]P))

=

∏
i∈I EJ(X,x([i]P))∏
i∈I DJ(x([i]P))

;

and finally
∏
i∈I EJ(X,x([i]P)) = ResZ(hI(Z), EJ(X,Z)) and

∏
i∈I DJ(x([i]P)) =

ResZ(hI(Z), DJ(Z)) = ∆I,J , which yields the result. �

4.10. Elliptic polynomial evaluation. Algorithm 2 is an algebraic algorithm for
computing hS(α); it is the elliptic analogue of Algorithm 1. Theorem 4.11 proves
its correctness and runtime.

Algorithm 2: Computing hS(α) =
∏
s∈S

(
α− x([s]P)

)
for P ∈ E(Fq)

Parameters: a prime power q; an elliptic curve E/Fq; P ∈ E(Fq); a finite
subset S ⊂ Z; an index system (I, J) for S such that
S ∩ nZ = I ∩ nZ = J ∩ nZ = {}, where n is the order of P

Input: α in Fq
Output: hS(α) where hS(X) =

∏
s∈S(X − x([s]P))

1 hI ←
∏
i∈I(Z − x([i]P)) ∈ Fq[Z]

2 DJ ←
∏
j∈J F0(Z, x([j]P)) ∈ Fq[Z]

3 ∆I,J ← ResZ(hI , DJ) ∈ Fq
4 EJ ←

∏
j∈J

(
F0(Z, x([j]P))α2 + F1(Z, x([j]P))α+ F2(Z, x([j]P))

)
∈ Fq[Z]

5 R← ResZ(hI , EJ) ∈ Fq
6 hK ←

∏
k∈S\(I±J)(α− x([k]P)) ∈ Fq

7 return hK ·R/∆I,J

Theorem 4.11. Let q be a prime power. Let E/Fq be an elliptic curve. Let P be
an element of E(Fq). Let n be the order of P . Let (I, J) be an index system for a
finite set S ⊂ Z. Assume that I, J , and S contain no elements of nZ. Given α in
Fq, Algorithm 2 computes

hS(α) =
∏
s∈S

(
α− x([s]P)

)
in Õ(max(#I,#J,#K)) Fq-operations, where K = S \ (I ± J).

In particular, if #I, #J , and #K are in Õ(
√

#S), then Algorithm 2 computes

hS(α) in Õ(
√

#S) Fq-operations. The Õ is uniform in q. Algorithm 2 can also take
the coordinates of P as input, at the cost of computing the relevant multiples of P .

Proof. The proof follows that of Proposition 3.5. Since S \ K = I ± J , we have
hS(α) = hI±J(α)·hK(α). Using the notation of Lemma 4.9: Line 1 computes hI(Z)

in Õ(#I) Fq-operations; Line 2 computes DJ(Z) in Õ(#J) Fq-operations; Line 3

computes ∆I,J in Õ(max(#I,#J)) Fq-operations; Line 4 computes EJ(α,Z) in

Õ(#J) Fq-operations; Line 5 computes ResZ(hI(Z), EJ(α,Z)), which is the same

as ∆I,JhI±J(α) by Lemma 4.9, in Õ(max(#I,#J)) Fq-operations; Line 6 computes

hK(α) in Õ(#K) Fq-operations; and Line 7 returns hS(α) = hK(α) ·hI±J(α). The

total number of Fq-operations is in Õ(max(#I,#J,#K)). �

Example 4.12 (Evaluating kernel polynomials). We now address a problem from
the introduction: evaluating ΨG , the radical of the denominators of the rational
functions defining the `-isogeny φ : E → E ′ with kernel G = 〈P 〉, for ` odd. Here

ΨG(X) = hS(X) =
∏
s∈S

(X − x([s]P)) where S = {1, 3, . . . , `− 2}

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 9

(the set S may be replaced by any set of representatives of ((Z/`Z) \ {0})/〈±1〉).
Following Example 4.7, let I = {2b(2i+ 1) | 0 ≤ i < b′} and J = {1, 3, . . . , 2b− 1}
with b = b

√
`− 1/2c and (for b > 0) b′ = b(` − 1)/4bc; then (I, J) is an index

system for S, and Algorithm 2 computes hS(α) = ΨG(α) for any α in Fq in Õ(
√
`)

Fq-operations.

Example 4.13 (Evaluating derivatives of polynomials). Algorithm 2 can evaluate
hS at points in any Fq-algebra, at the cost of a slowdown that depends on how large
the algebra is. These algebras need not be fields. For example, we can evaluate
hS(α+ ε) in the algebra Fq[ε]/ε2 of 1-jets, obtaining hS(α) + εh′S(α). We can thus
evaluate derivatives, sums over roots, etc. The algebra of 1-jets was used the same
way in, e.g., [43, 38, 5]; [2] also notes Zagier’s suggested terminology “jet plane”.

4.14. Irrational generators. The point P in Lemma 4.9, Algorithm 2, and The-
orem 4.11 need not be in E(Fq): everything is defined over Fq if x(P) is in Fq. More
generally, take P in E(Fqe) with x(P) in Fqe for some minimal e ≥ 1. The q-power
Frobenius π on E maps P to π(P) = [λ]P for some eigenvalue λ in Z/nZ of order e
in (Z/nZ)

∗
. Let L = {λa | 0 ≤ a < e}. For hS(X) to be in Fq[X], we need S = LS′

for some S′ ⊆ Z (modulo n): that is, S = {λas′ | 0 ≤ a < e, s′ ∈ S′}. Then

hS(X) =
∏
s′∈S′

e−1∏
a=0

(X − x([λas′]P)) =
∏
s′∈S′

gs′(X)

where the polynomial

gs′(X) =

e−1∏
a=0

(X − x([λas′]P)) =

e−1∏
a=0

(X − x(πa([s′]P))) =

e−1∏
a=0

(X − x([s′]P)q
a

)

is in Fq[X], and can be easily computed from x([s]P).
To write hI , DJ , and EJ as products of polynomials over Fq, we need the index

system (I, J) for S to satisfy (I, J) = (LI ′, LJ ′) for some index system (I ′, J ′) for S′.
While this does not affect the asymptotic complexity of the resulting evaluation
algorithms at our level of analysis, it should be noted that the requirement that

(I, J) = (LI ′, LJ ′) is quite strong: typically e is in O(`), so #L is not in Õ(
√

#S),

and a suitable index system (I, J) with #I and #J in Õ(
√

#S) does not exist.

4.15. Other functions on E. We can replace x with more general functions on E ,
though for completely general f there may be no useful analogue of Lemma 4.3,
or at least not one that allows a Lemma 4.9 with conveniently small index system.
However, everything above adapts easily to the case where x is composed with an
automorphism of P1 (that is, f = (ax + b)/(cx + d) with a, b, c, d in Fq such that
ad 6= bc). Less trivially, we can take f = ψx for any isogeny ψ : E → E ′′. In this
case, the F0, F1, and F2 of Lemma 4.3 are derived from the curve E ′′, not E .

4.16. Abelian varieties. It is tempting to extend our results to higher-dimensional
principally polarized abelian varieties (PPAVs), replacing E with a PPAVA/Fq, and
x with some coordinate on A, but evaluating the resulting hS using our methods is
more complicated. The main issue is the analogue of Lemma 4.3. If we choose any
even coordinate x on A, then the classical theory of theta functions yields quadratic
relations between x(P + Q), x(P − Q), and the coordinates of P and Q, but not
only x(P) and x(Q): they also require the other even coordinates of P and Q. (The
simplest example of this is seen in the differential addition formulæ for Kummer
surfaces: see [20, §6], [29, §3.2], and [16, §4.4].) This means that an analogue of
Algorithm 2 for PPAVs would require multivariate polynomials and resultants; an
investigation of this is well beyond the scope of this article.

10 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

5. Computing elliptic isogenies

We now apply the techniques of §4 to the problem of efficient isogeny computa-
tion. The task is divided in two parts: evaluating isogenies on points (§5.1), and
computing codomain curves (§5.2). Our cryptographic applications use isogenies
between Montgomery models of elliptic curves, and we concentrate exclusively on
this case here; but our methods adapt easily to Weierstrass and other models.

5.1. Evaluating isogenies. Let E/Fq : y2 = x(x2 + Ax + 1) be an elliptic curve
in Montgomery form, and let P be a point of prime order ` 6= 2 in E(Fq). Costello
and Hisil give explicit formulæ in [23] for a quotient isogeny φ : E → E ′ with kernel
G = 〈P 〉 such that E ′/Fq : y2 = x(x2 +A′x+ 1) is a Montgomery curve:

φ : (X,Y) 7−→ (φx(X), c0Y φ
′
x(X))

where c0 =
∏

0<s<`/2 x([s]P) and

(1) φx(X) = X
∏

0<s<`

x([s]P)X − 1

X − x([s]P)
.

See [48] for generalizations and a different proof, and see the earlier paper [42] for
analogous Edwards-coordinate formulas.

Our main goal is to evaluate φ on the level of x-coordinates: that is, to compute
φx(α) given α = x(Q) for Q in E(Fq). This is sufficient for our cryptographic appli-
cations. Applications that also need the y-coordinate of φ(Q), namely c0y(Q)φ′x(α),
can compute c0 as (−1)(`−1)/2hS(0), and can compute φ′x(α) together with φx(α)
by the technique of Example 4.13. To compute φx(α), we rewrite Eq. (1) as

φx(X) =
X` · hS(1/X)2

hS(X)2
where S = {1, 3, . . . , `− 2} .

Computing φx(α) thus reduces to two applications of Algorithm 4.11, using (for
example) the index system (I, J) for S in Example 4.7. The constant ∆I,J appears
with the same multiplicity in the numerator and denominator, so we need not
compute it. All divisions in the computation are by nonzero field elements except
in the following cases, which can be handled separately: if Q = 0 then φ(Q) = 0; if
Q 6= 0 but hS(α) = 0 for α = x(Q) then φ(Q) = 0; if Q = (0, 0) then φ(Q) = (0, 0).

5.2. Computing codomain curves. Our other main task is to determine the
coefficient A′ in the defining equation of E ′.

One approach is as follows. We can now efficiently compute φ(Q) for any Q
in E(Fq). Changing the base ring from Fq to R = Fq[α]/(α2 + Aα + 1) (losing a
small constant factor in the cost of evaluation) gives us φ(Q) for any Q in E(R). In
particular, Q = (α, 0) is a point in E [2](R), and computing φ(Q) = (α′, 0) reveals
A′ = −(α′+1/α′). An alternative—at the expense of taking a square root, which is
no longer a q-independent algebraic computation—is to find a point (α, 0) in E(Fq2)
with α 6= 0. Sometimes α is in Fq, and then extending to Fq2 is unnecessary.

Another approach is to use explicit formulas for A′. The formulas from [23] give
A′ = c20(A−3σ) where c20 =

∏
0<s<` x([s]P) and σ =

∑
0<s<`(x([s]P)−1/x([s]P)).

As pointed out in [40] in the context of CSIDH, one can instead transform to twisted
Edwards form and use the formulas from [42], obtaining A′ = 2(1+d)/(1−d) where

d =

(
A− 2

A+ 2

)`(∏
s∈S

x([s]P)− 1

x([s]P) + 1

)8

=

(
A− 2

A+ 2

)`(
hS(1)

hS(−1)

)8

.

We can thus compute A′ using Õ(
√
`) operations: every task we need can be per-

formed by some evaluations of hS and some (asymptotically negligible) operations.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 11

6. Applications in isogeny-based cryptography

With the notable exception of SIDH/SIKE [34, 25, 1], most isogeny-based crypto-
graphic protocols need to evaluate large-degree isogenies. Specifically, CRS [49, 24],
CSIDH [18], CSURF [17], etc. use large-degree isogenies, since not enough keys are
fast compositions of isogenies of a few small prime degrees. The largest isogeny de-
gree, with standard optimizations, grows quasi-linearly in the pre-quantum security
level. For the same post-quantum security level, known quantum attacks require
an asymptotically larger base field but do not affect the largest isogeny degree; see
[18, Remark 11].

Concretely, targeting 128 bits of pre-quantum security, CSIDH-512 fixes

p = 4 · (3 · 5 · · · 373)︸ ︷︷ ︸
73 first odd primes

· 587− 1

and uses isogenies of all odd prime degrees ` | p+ 1. Similarly, CSURF-512 fixes

p = 8 · 9 · (5 · 7 · · · 337)︸ ︷︷ ︸
66 consecutive primes

·349 · 353 · (367 · · · 389)︸ ︷︷ ︸
6 consecutive primes

−1

and uses isogenies of all prime degrees ` | p+ 1, including ` = 2.
The CSIDH and CSURF algorithms repeatedly sample a random point of order

dividing p + 1 in E/Fp, multiply it by an appropriate cofactor to get P , and then
apply Vélu’s formulas for each of the primes ` | ord(P) to obtain E ′ = E/〈P 〉.
Our algorithm seamlessly replaces Vélu’s formulas in both systems. Computing
E ′ is easy in CSURF: all curves involved have rational 2-torsion, and can thus be
represented by a root of α2 +Aα−1 in Fp. For CSIDH, we can apply the techniques
of §5.2; alternatively, we can walk to the surface and represent curves as in CSURF.

B-SIDH [22] is an SIDH variant using smaller prime fields, at the cost of much
larger prime isogeny degrees. One participant uses isogenies of degree ` | p+ 1, and
the other uses ` | p− 1. Since primes p such that p− 1 and p+ 1 both have many
small prime factors are rare, some of the ` involved in B-SIDH tend to be even
larger than in CSIDH and CSURF. The B-SIDH algorithm starts from a single
point P and computes E/〈P 〉 together with the evaluation of φ : E → E/〈P 〉 at
three points. Unlike CSIDH and CSURF, there is no repeated random sampling of
points: a single `-isogeny evaluation for each prime ` | p± 1 is needed.

Our asymptotic speedup in isogeny evaluation implies asymptotic speedups for
CRS, CSIDH, CSURF, and B-SIDH as the security level increases. This does
not imply, however, that there is a speedup for (e.g.) pre-quantum security 2128.
Appendix A addresses the question of how large ` needs to be before our algorithms
become faster than the conventional algorithms.

Cryptographic protocols that exploit the KLPT algorithm [35] for isogeny path
renormalization, such as the signature scheme [28] and the encryption scheme

SÉTA [26], need to work with irrational torsion points. They may thus benefit
from the technique of §4.14. We did not investigate these protocols further.

References

[1] Reza Azarderakhsh, Brian Koziel, Matt Campagna, Brian LaMacchia, Craig Costello, Patrick

Longa, Luca De Feo, Michael Naehrig, Basil Hess, Joost Renes, Amir Jalali, Vladimir
Soukharev, David Jao, and David Urbanik. Supersingular isogeny key encapsulation, 2017.

https://sike.org.

[2] Karim Belabas, Hendrik W. Lenstra, Jr., and Don B. Zagier. Explicit methods in number
theory, 2011. Oberwolfach report 35/2011. https://publications.mfo.de/handle/mfo/3250.

[3] Daniel J. Bernstein. Scaled remainder trees, 2004. https://cr.yp.to/papers.html#

scaledmod.

https://sike.org
https://publications.mfo.de/handle/mfo/3250
https://cr.yp.to/papers.html#scaledmod
https://cr.yp.to/papers.html#scaledmod

12 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

[4] Daniel J. Bernstein. Reducing lattice bases to find small-height values of univariate polyno-

mials. In Joe Buhler and Peter Stevenhagen, editors, Algorithmic number theory: lattices,

number fields, curves and cryptography, pages 421–446. Cambridge University Press, 2008.
https://cr.yp.to/papers.html#smallheight.

[5] Daniel J. Bernstein. Jet list decoding, 2011. https://cr.yp.to/talks/2011.11.24/slides.
pdf.

[6] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum circuits for

the CSIDH: optimizing quantum evaluation of isogenies. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT, volume 11477 of Lecture Notes in Computer Science, pages 409–441,

2019. https://ia.cr/2018/1059.

[7] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65–98, 2017. https://arxiv.org/abs/1411.1607.

[8] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993). https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf.

[9] Alin Bostan. Computing the N-th term of a q-holonomic sequence. Personal communication,

2020.
[10] Alin Bostan, Pierrick Gaudry, and Éric Schost. Linear recurrences with polynomial coeffi-

cients and application to integer factorization and Cartier–Manin operator. SIAM Journal
on Computing, 36(6):1777–1806, 2007. https://hal.inria.fr/inria-00514132.

[11] Alin Bostan, Grégoire Lecerf, Bruno Salvy, Éric Schost, and Bernd Wiebelt. Complexity issues
in bivariate polynomial factorization. ISSAC 2004, pages 42–49. Association for Computing

Machinery, 2004. https://specfun.inria.fr/bostan/publications/BoLeSaScWi04.pdf.

[12] Alin Bostan, Grégoire Lecerf, and Éric Schost. Tellegen’s principle into practice. ISSAC

2003, pages 37–44. Association for Computing Machinery, 2003. https://specfun.inria.

fr/bostan/publications/BoLeSc03.pdf.

[13] Richard P. Brent and H. T. Kung. The area-time complexity of binary multiplication. Jour-
nal of the ACM, 28:521–534, 1981. https://maths-people.anu.edu.au/~brent/pub/pub055.

html.

[14] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity
theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997.

[15] J. W. S. Cassels. Lectures on Elliptic Curves, volume 24 of London Mathematical Society

Student Texts. Cambridge University Press, 1991.
[16] J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of curves of genus

2, volume 230 of London Mathematical Society Lecture Note Series. Cambridge University

Press, 1996.
[17] Wouter Castryck and Thomas Decru. CSIDH on the surface. 2019. https://ia.cr/2019/1404.

[18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH:

an efficient post-quantum commutative group action. In ASIACRYPT (3), volume 11274 of
Lecture Notes in Computer Science, pages 395–427, 2018. https://ia.cr/2018/383.

[19] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca De Feo, Fran-
cisco Rodŕıguez-Henŕıquez, and Benjamin Smith. Stronger and faster side-channel protec-

tions for CSIDH. In Progress in Cryptology – LATINCRYPT 2019, pages 173–193, 2019.

https://ia.cr/2019/837.
[20] David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers generated by

addition in formal groups and new primality and factorization tests. Advances in Applied

Mathematics, 7(4):385–434, 1986. https://core.ac.uk/download/pdf/82012348.pdf.
[21] Edgar Costa and David Harvey. Faster deterministic integer factorization. Mathematics of

Computation, 83(285):339–345, 2014. https://arxiv.org/abs/1201.2116.

[22] Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion, 2019.
https://ia.cr/2019/1145.

[23] Craig Costello and Hüseyin Hisil. A simple and compact algorithm for SIDH with arbitrary

degree isogenies. In ASIACRYPT (2), volume 10625 of Lecture Notes in Computer Science,
pages 303–329, 2017. https://eprint.iacr.org/2017/504.

[24] Jean-Marc Couveignes. Hard homogeneous spaces, 2006. https://ia.cr/2006/291.
[25] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from su-

persingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014.

https://ia.cr/2011/506.

[26] Cyprien Delpech de Saint Guilhem, Péter Kutas, Christophe Petit, and Javier Silva. SÉTA:
supersingular encryption from torsion attacks, 2019. https://ia.cr/2019/1291.

[27] Claus Fieker, William Hart, Tommy Hofmann, and Fredrik Johansson. Nemo/Hecke: Com-

puter algebra and number theory packages for the Julia programming language. ISSAC 2017,
pages 157–164, New York, NY, USA, 2017. ACM. https://arxiv.org/abs/1705.06134v1.

https://cr.yp.to/papers.html#smallheight
https://cr.yp.to/talks/2011.11.24/slides.pdf
https://cr.yp.to/talks/2011.11.24/slides.pdf
https://ia.cr/2018/1059
https://arxiv.org/abs/1411.1607
https://www.math.ru.nl/~bosma/pubs/JSC1997Magma.pdf
https://hal.inria.fr/inria-00514132
https://specfun.inria.fr/bostan/publications/BoLeSaScWi04.pdf
https://specfun.inria.fr/bostan/publications/BoLeSc03.pdf
https://specfun.inria.fr/bostan/publications/BoLeSc03.pdf
https://maths-people.anu.edu.au/~brent/pub/pub055.html
https://maths-people.anu.edu.au/~brent/pub/pub055.html
https://ia.cr/2019/1404
https://ia.cr/2018/383
https://ia.cr/2019/837
https://core.ac.uk/download/pdf/82012348.pdf
https://arxiv.org/abs/1201.2116
https://ia.cr/2019/1145
https://eprint.iacr.org/2017/504
https://ia.cr/2006/291
https://ia.cr/2011/506
https://ia.cr/2019/1291
https://arxiv.org/abs/1705.06134v1

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 13

[28] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification protocols and signature

schemes based on supersingular isogeny problems. In ASIACRYPT, 2017. https://ia.cr/

2016/1154.
[29] Pierrick Gaudry. Fast genus 2 arithmetic based on Theta functions. J. Mathematical Cryp-

tology, 1(3):243–265, 2007. https://ia.cr/2005/314.
[30] William B. Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library for Num-

ber Theory, 2020. Development version, http://flintlib.org.

[31] David Harvey. Faster algorithms for the square root and reciprocal of power series. Mathe-
matics of Computation, 80(273):387–394, 2011. https://arxiv.org/abs/0910.1926.

[32] Markus Hittmeir. A babystep-giantstep method for faster deterministic integer factoriza-

tion. Mathematics of Computation, 87(314):2915–2935, 2018. https://arxiv.org/abs/1608.
08766v1.

[33] Aaron Hutchinson, Jason LeGrow, Brian Koziel, and Reza Azarderakhsh. Further optimiza-

tions of CSIDH: A systematic approach to efficient strategies, permutations, and bound
vectors, 2019. https://ia.cr/2019/1121.

[34] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. In PQCrypto 2011, pages 19–34, 2011. https://ia.cr/2011/506.
[35] David Kohel, Kristin E. Lauter, Christophe Petit, and Jean-Pierre Tignol. On the quaternion

`-isogeny path problem. https://ia.cr/2014/505.
[36] David R. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, Uni-

versity of California at Berkeley, 1996. http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf.

[37] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of mathematics, pages
649–673, 1987. https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1987c/art.pdf.

[38] Gregorio Malajovich and Jorge P. Zubelli. Tangent Graeffe iteration. Numerische Mathe-

matik, 89(4):749–782, 2001. https://arxiv.org/abs/math/9908150.
[39] Michael Meyer, Fabio Campos, and Steffen Reith. On lions and elligators: An efficient

constant-time implementation of CSIDH. In Jintai Ding and Rainer Steinwandt, editors,

PQCrypto 2019, pages 307–325, 2019. https://ia.cr/2018/1198.
[40] Michael Meyer and Steffen Reith. A faster way to the CSIDH. In INDOCRYPT, volume

11356 of Lecture Notes in Computer Science, pages 137–152. Springer, 2018. https://ia.

cr/2018/782.
[41] Peter Lawrence Montgomery. An FFT extension of the elliptic curve method of factorization.

PhD thesis, UCLA, 1992. https://cr.yp.to/bib/1992/montgomery.pdf.
[42] Dustin Moody and Daniel Shumow. Analogues of Vélu’s formulas for isogenies on alternate

models of elliptic curves. Mathematics of Computation, 85(300):1929–1951, 2016. https:

//ia.cr/2011/430.
[43] Jacques Morgenstern. Algorithmes linéaires tangents et complexité. Comptes Rendus Heb-

domadaires des Séances de l’Académie des Sciences, Série A, 277:367–369, septembre 1973.

https://gallica.bnf.fr/ark:/12148/cb34416987n/date.
[44] David B. Mumford. On the equations defining abelian varieties. I. Inventiones Mathematicae,

1(4):287–354, 1966. https://dash.harvard.edu/handle/1/3597241.

[45] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. (Short Paper) A
faster constant-time algorithm of CSIDH keeping two points. In Nuttapong Attrapadung and

Takeshi Yagi, editors, Advances in Information and Computer Security, pages 23–33, 2019.

https://ia.cr/2019/353.
[46] John M. Pollard. Theorems on factorization and primality testing. Mathematical Proceedings

of the Cambridge Philosophical Society, 76(3):521–528, 1974. https://doi.org/10.1017/

S0305004100049252.
[47] Lawrence R. Rabiner, R. W. Schafer, and Charles M. Rader. The chirp-z transform algorithm.

IEEE Transactions on Audio and Electroacoustics, 17:86–92, 1969. https://www.ece.ucsb.
edu/Faculty/Rabiner/ece259/Reprints/015_czt.pdf.

[48] Joost Renes. Computing isogenies between Montgomery curves using the action of (0, 0).
PQCrypto 2018, pages 229–247, 2018. https://ia.cr/2017/1198.

[49] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on isogenies,

2006. https://ia.cr/2006/145.

[50] Volker Strassen. Einige Resultate über Berechnungskomplexität. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 78:1–8, 1976.

[51] Volker Strassen. The computational complexity of continued fractions. SIAM Journal on
Computing, 12:1–27, 1983.

[52] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0), 2020.

https://www.sagemath.org.

https://ia.cr/2016/1154
https://ia.cr/2016/1154
https://ia.cr/2005/314
http://flintlib.org
https://arxiv.org/abs/0910.1926
https://arxiv.org/abs/1608.08766v1
https://arxiv.org/abs/1608.08766v1
https://ia.cr/2019/1121
https://ia.cr/2011/506
https://ia.cr/2014/505
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1987c/art.pdf
https://arxiv.org/abs/math/9908150
https://ia.cr/2018/1198
https://ia.cr/2018/782
https://ia.cr/2018/782
https://cr.yp.to/bib/1992/montgomery.pdf
https://ia.cr/2011/430
https://ia.cr/2011/430
https://gallica.bnf.fr/ark:/12148/cb34416987n/date
https://dash.harvard.edu/handle/1/3597241
https://ia.cr/2019/353
https://doi.org/10.1017/S0305004100049252
https://doi.org/10.1017/S0305004100049252
https://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/015_czt.pdf
https://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/015_czt.pdf
https://ia.cr/2017/1198
https://ia.cr/2006/145
https://www.sagemath.org

14 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

[53] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus Hebdomadaires des

Séances de l’Académie des Sciences, Série A, 273:238–241, juillet 1971. https://gallica.

bnf.fr/ark:/12148/cb34416987n/date.

Appendix A. Concrete costs and cross-overs

Conventional algorithms use Θ(`) operations to evaluate an `-isogeny. Any

Õ(
√
`) algorithm is better than Θ(`) for all sufficiently large `, but this does not

answer the question of how large “sufficiently large” is. A more precise asymptotic
comparison, such as

√
`(log `)2+o(1) vs. Θ(`), also does not answer the question.

This appendix looks more closely at performance and quantifies the cross-over
point. In each of the metrics considered here, the cross-over point is within the
range of primes used in CSIDH-512. The new `-isogeny algorithm sets new speed
records for CSIDH-512 and CSIDH-1024 by small but measurable percentages, and
has more effect on protocols that use larger `-isogenies. Our code is available from
https://velusqrt.isogeny.org.

A.1. Choice of function to compute. This appendix highlights the following
subroutine: evaluate an `-isogeny on a point, and at the same time compute the
target curve. The inputs are an odd prime `, a coefficient A for a Montgomery curve
By2 = x(x2 + Ax + 1), a coordinate x(P) for a curve point P of order `, and a
coordinate x(Q) for a curve point Q outside 〈P 〉. The outputs are A′ and x(φ(Q)),
where φ is a separable `-isogeny with kernel 〈P 〉 from the curve to a Montgomery
curve B′y2 = x(x2 +A′x+1). The inputs and outputs are represented as fractions.
The base field is a parameter, and sometimes software makes a specific choice of
this parameter, such as the CSIDH-512 prime field.

This subroutine is the sole use of isogenies in, e.g., the CSIDH software from [18]
and [40]. This does not mean that speeding up this subroutine produces the same
speedup (averaged appropriately over `) in this software: the software also spends
some time on other operations. Furthermore, it might be useful to push more points
through the same isogeny, as in [25], or fewer; see generally [6, Section 8].

Beyond measuring the costs of `-isogenies, we put these costs into context by
measuring various implementations of the following protocols: CSIDH-512 and
CSIDH-1024 using the primes from [18]; CSURF-512 using the prime from [17];
and B-SIDH using a new prime defined here.

The search for B-SIDH-friendly p is a hard task; it is not currently known how
large the degrees ` could be, though we expect them to be considerably larger than
those used in CSIDH and CSURF. A 256-bit B-SIDH-friendly prime would have a
security level comparable to that of SIKE p434, but [22] does not give any 256-bit p.
We use our own 256-bit prime (found by accident), which is the p such that

p+ 1 = 232 · 521 · 7 · 11 · 163 · 1181 · 2389 · 5233 · 8353 · 10139 · 11939

· 22003 · 25391 · 41843 · 3726787 · 6548911 ,

p− 1 = 2 · 356 · 31 · 43 · 59 · 271 · 311 · 353 · 461 · 593 · 607 · 647 · 691

· 743 · 769 · 877 · 1549 · 4721 · 12433 · 26449 .

For B-SIDH with this p, one participant needs to evaluate isogenies of degree as
large as ≈ 223, while the other one only handles isogenies of degree less than 214.

A.2. Choices of cost metric. This appendix uses several different metrics:

• Time for software in the Magma [8] computer-algebra system. We use this
metric for comparison to [17], which provides software in this system for
CSIDH and CSURF.

https://gallica.bnf.fr/ark:/12148/cb34416987n/date
https://gallica.bnf.fr/ark:/12148/cb34416987n/date
https://velusqrt.isogeny.org

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 15

• Time for Julia software, using Nemo for the underlying arithmetic. Julia [7]
is a just-in-time-compiled programming language designed for a “combina-
tion of productivity and performance”, and Nemo [27] is a computer-algebra
package for this language.
• Time for C software using FLINT [30], specifically the modules fmpz mod

and fmpz mod poly for arithmetic on elements of Fp and Fp[X] respectively.
• Time for arbitrary machine-language software. We use this metric for com-

parison to the CSIDH-512 implementation from [40]; that implementation,
in turn, is an improved version of the CSIDH-512 implementation from [18],
and reuses the assembly-language field operations from [18].

• Number of multiplications in an algebraic algorithm using only additions,
subtractions, and multiplications. There are no divisions here: recall that
inputs and outputs are represented projectively.

The last metric is a traditional object of study in algebraic complexity theory,
and has the virtue of a simple and clear definition. However, this metric is perhaps
too simple: it ignores potentially massive overheads for additions, subtractions, and
non-algebraic overhead, while it ignores the possibility of speedups from divisions,
non-algebraic polynomial-multiplication algorithms, etc.

The other metrics have the virtue of being physical time measurements that
include all overheads, but these metrics have the complication of depending upon
the choice of CPU. We used one core of a 3.40GHz Intel Core i7-6700 (Skylake)
with Turbo Boost disabled.

The first three metrics have the further complications of depending upon the
details of large software libraries. We used Magma v2.21-6, Julia 1.3.1, Nemo
0.16.2, the FLINT development branch (commit dd1021a), and GMP 6.2.0 tuned
using the provided tune program. Improvements in these libraries would change
the metrics, perhaps increasing or decreasing the ` cross-over points. Data points
in these metrics are nevertheless useful examples of tradeoffs between CPU time
and programmer time.

Internally, Nemo uses FLINT for polynomial arithmetic and field arithmetic;
FLINT uses GMP for integer arithmetic; and GMP is “carefully designed to be as
fast as possible, both for small operands and for huge operands”. Unfortunately,
the external and internal library APIs create various overheads. For example,
for random integers modulo the CSIDH-512 prime p, GMP’s mpz mul takes about
127 Skylake cycles for squaring and about 173 cycles for general multiplication,
and GMP’s mpz mod takes about 517 cycles to reduce the product modulo p, so
straightforward modular multiplication takes between 600 and 700 cycles. GMP’s
mpz powm modular-exponentiation function is much faster than this, taking only
about 302n cycles to compute a 2nth power for large n, because internally it uses
much faster Montgomery reduction. The fp mul modular-multiplication function
from [18] also uses Montgomery reduction, avoids the overhead of allowing variable-
size inputs, and takes only about 200 cycles.

There are other metrics of interest. Parallel performance metrics would show
a disadvantage of a continued-fraction computation of resultants, namely that it

has depth Õ(
√
`); but, as noted in [41, Section 4.2], remainder trees avoid this

disadvantage and seem to use somewhat fewer operations in any case. As another
example, realistic hardware-performance metrics such as the area-time metric in [13]

would increase our cost from Õ(
√
`) to Õ(`3/4).

A.3. Results for `-isogenies. We wrote four implementations of our `-isogeny
algorithm to show upper bounds on costs in each of the first four metrics above.
Costs here are for our highlighted subroutine, namely evaluating an `-isogeny on

16 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

one point and computing the new curve coefficient; see Appendix A.4 for timings
of applications. The base field here is the CSIDH-512 prime field, except as noted
below.

We display the results graphically in Fig. 1, Fig. 2, and Fig. 3 as follows:

• The horizontal axis is `. We limit these graphs to the range of degrees `
used in CSIDH-512, except as noted below.

• The vertical axis is cost divided by `+ 2. (The conventional algorithm has
a main loop of length (` − 1)/2, but also has operations outside the main
loop. Dividing by ` + 2 does a better job of reflecting these costs than
dividing by `− 1.)

• Blue plus indicates the cost of the conventional `-isogeny algorithm, and
red cross indicates the cost of the new `-isogeny algorithm.

• Large cross and large plus indicate medians across 15 experiments. Small
plus and small cross indicate quartiles. (The quartiles are often so close to
medians as to be invisible in the graphs.)

• Each axis has a logarithmic scale, with a factor 2 horizontally occupying
the same visual distance as a factor

√
2 vertically. (This choice means that

a Θ̃(
√
`) speedup is a 45-degree line asymptotically.)

The implementations are as follows. First, velusqrt-magma implements the new
`-isogeny algorithm in Magma. Fig. 1 shows the resulting cycle counts. The graph
shows that the new algorithm is better than the old algorithm for ` ≥ 113.

Second, velusqrt-julia implements the new `-isogeny algorithm in Julia, on
top of the field arithmetic and polynomial arithmetic provided by Nemo. Fig. 2
shows the resulting cycle counts. This graph goes beyond the range of ` used in
CSIDH-512, and uses a smaller base field: each ` is measured with prime p =
8 · ` · f − 1, where f is the smallest cofactor producing a 256-bit prime.

Third, velusqrt-flint implements `-isogenies in C on top of the field arith-
metic and polynomial arithmetic provided by FLINT. The sets I and J are con-
structed as in Example 4.12, with the parameter b manually tuned. This software
was compiled using gcc-7.5.0 -O3 -march=native -Wall -Wextra -pedantic

-std=c99. The top graph in Figure 3 shows the resulting cycle counts: e.g.,
2026744 ≈ 3440.992(` + 2) cycles for ` = 587 for the new algorithm, about 45%
faster than the old one.

Fourth, velusqrt-asm implements polynomial arithmetic in C on top of the
CSIDH-512 assembly-language field-arithmetic subroutines from [18], and imple-
ments `-isogenies (with automatic tuning of #I and #J) on top of that. We
compiled the C portion of this software using clang-6.0 -O3 -Os -march=native

-mtune=native -Wall -Wextra -std=gnu99 -pedantic. The middle graph in
Figure 3 shows the resulting cycle counts: e.g., 745862 ≈ 1266.319(` + 2) cycles
for ` = 587 for the new software, about 22% faster than the software from [40].
(For small `, the automatic tuning chooses #I = 0 and #J = 0, falling back to the
conventional algorithm, so the red curve overlaps the blue curve.)

The velusqrt-asm software includes an internal multiplication counter, and we
used this to show an upper bound on cost in the fifth metric. The bottom graph in
Figure 3 shows the resulting multiplication counts (with #I and #J automatically
re-tuned for this metric): e.g., 2296 ≈ 3.898(` + 2) multiplications for ` = 587 for
the new algorithm, about 55% faster than the 3550 ≈ 6.027(`+ 2) multiplications
for the conventional algorithm.

We also implemented the `-isogeny algorithm in SageMath [52], but this was
only to double-check the correctness of the algorithm output, not to evaluate per-
formance in any particular metric.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 17

5 7 11 13 17
19

23 29
31

37
41
43

47
53

59

61
67
71

73
79

83

89
97
101
103
107

109

113

127
131
137

139

149
151
157

163
167
173

179

181

191
193

197

199

211
223

227

229

233

239

241
251
257

263

269

271
277
281

283

293

307
311

313

317
331

337

347

349
353

359

367

373 587

326214.286

268417.778

229478.667

195276.000

167979.840
153457.636
139935.846
127876.800

112485.746
102256.987
92060.813
84685.341
77561.760
71183.805
64959.552
58763.419
54003.158
49372.942
45261.480

36621.789

Figure 1. Cost to evaluate an `-isogeny on one CSIDH-512 point
and compute the new curve coefficient. Graph shows Skylake cycles
for velusqrt-magma divided by `+ 2.

A.4. Results for protocols. We integrated our `-isogeny implementations into
the CSIDH-512 and CSURF-512 code from [17] (https://github.com/TDecru/
CSURF), and into the CSIDH-512 code from [40]. We also wrote Julia/Nemo code
for CSIDH-512, CSURF-512, and B-SIDH, and C/FLINT code for CSIDH-512 and
CSURF-512. We also adapted the [18] assembly-language field arithmetic from
CSIDH-512 to CSIDH-1024, saving about a factor 3 compared to the C code pro-
vided in [18] for CSIDH-1024. The Magma implementation switches over to the old
`-isogeny algorithm for ` < 113, and the FLINT implementation switches over to
the old `-isogeny algorithm for ` < 150. These implementations of CSIDH, CSURF,
and B-SIDH are included in velusqrt-magma, velusqrt-julia, velusqrt-flint,
and velusqrt-asm.

Beware that none of these protocol implementations are constant-time. Constant-
time implementations of CSIDH [39, 45, 19, 33] are an active area of research, and it
is too early to guess what the final performance of constant-time CSIDH, CSURF,
and B-SIDH will be on top of our `-isogeny algorithm.

We display CSIDH and CSURF performance in a series of graphs. Each graph
has horizontal lines showing 25% quartile, median, and 75% quartile. Each graph

https://github.com/TDecru/CSURF
https://github.com/TDecru/CSURF

18 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

5 11 17 37 67 131 257 521 1031 2053 4099 8209 16411

45532.800
39192.323

29822.295

23436.462

17401.374
14927.253
12625.372

10036.826

7999.829

6055.518

4871.581

3622.459

2998.128

2238.375

Figure 2. Cost to evaluate an `-isogeny on one point and com-
pute the new curve coefficient. Graph shows Skylake cycles for
velusqrt-julia divided by `+ 2.

shows EK cost measurements, namely E evaluations for each of K keys. Keys are
sorted horizontally in increasing order of median cost. Within each key, evaluations
are sorted horizontally in increasing order of cost. Blue plus indicates the cost of
an action using the conventional `-isogeny algorithm, while red cross indicates the
cost of an action that switches over to the new `-isogeny algorithm for sufficiently
large `. Within each graph, the blue and red curves use the same sample of keys.

The specific graphs are as follows:

• CSIDH-512 and CSURF-512 cycles using velusqrt-magma: Fig. 4 and
Fig. 5 respectively, with E = 7 and K = 63.

• CSIDH-512 and CSURF-512 cycles using velusqrt-flint: Fig. 6 and
Fig. 7 respectively, with E = 15 and K = 65. The new `-isogeny algo-
rithm speeds up CSIDH-512 by approximately 5%, and CSURF-512 by
approximately 3%.

• CSIDH-512 and CSIDH-1024 cycles using velusqrt-asm: Fig. 8 and Fig. 9
respectively, with E = 15 and K = 65. The new `-isogeny algorithm speeds
up CSIDH-512 by approximately 1%, and CSIDH-1024 by approximately
8% (on top of the assembly-language speedup mentioned above).

• CSIDH-512 and CSIDH-1024 multiplication counts using velusqrt-asm:
Fig. 10 and Fig. 11 respectively, with E = 7 and K = 65. The new `-
isogeny algorithm saves approximately 8% and 16% respectively.

Finally, we evaluated the performance of the velusqrt-julia implementation of
B-SIDH using the prime above. We only measured the time needed for computing
the isogeny defined by a random point of order p + 1 or p − 1, and to evaluate it
at three random points. This simulates the workload of the first stage of B-SIDH;
the second stage does not need to evaluate the isogeny at any point, and is thus
considerably cheaper. We estimate that the other costs occurring in B-SIDH, such
as the double-point Montgomery ladder, are negligible compared to these.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 19

3 5 7 11 13 17
19

23 29
31

37
41
43

47
53

59

61
67
71

73
79

83

89
97
101
103
107

109

113

127
131
137

139

149
151
157

163
167
173

179

181

191
193

197

199

211
223

227

229

233

239

241
251
257

263

269

271
277
281

283

293

307
311

313

317
331

337

347

349
353

359

367

373 587

6.182

5.539
5.050
4.635

3.898

1628.033
1498.000

1266.319

13935.714

10908.923
9881.238

8294.129
7523.209

6735.217

5941.388
5432.857
4995.616
4565.253

4085.535

3440.992

Figure 3. Cost to evaluate an `-isogeny on one CSIDH-512 point
and compute the new curve coefficient. Top graph: Skylake cycles
for velusqrt-flint divided by `+2. Middle graph: Skylake cycles
for velusqrt-asm divided by `+2. Bottom graph: Multiplications
inside velusqrt-asm divided by `+ 2.

Using our algorithm, an isogeny of degree p − 1 is evaluated in about 0.56 sec-
onds, whereas it takes approximately 2 seconds to evaluate it using the conventional
algorithms. More remarkably, we can evaluate an isogeny of degree p + 1 in ap-
proximately 10 seconds, whereas the naive approach (in one experiment) takes 6.5
minutes.

A.5. Techniques to save time inside the `-isogeny algorithm. Here is a brief
survey, based on a more detailed analysis of the results above, of ways to reduce
the cost of evaluating an `-isogeny and computing the new curve coefficient:

• Instead of computing the coefficients of the quadratic polynomial Q(α) =
F0(α, x([j]P))Z2 + F1(α, x([j]P))Z + F2(α, x([j]P)) separately for each α,
merge the four computations of Q(α), Q(1/α), Q(1), Q(−1) across the four
computations of hS(α), hS(1/α), hS(1), hS(−1).

20 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

6979795712
7394523616
7861127478

6047049948
6380956104
6860835654

+

+
++

+
+

+

+

+

+

++

++

+
+
+

++
++

+

+
+

++

+

+

+
+
+

+

+

+
+

+
+
++

++

+

++
++

++
+

+

++

+
+
+
+

++
+

+++

+

+

+++
+

+
+

+

+

++
+++

+

+

++
+

++

+

+
++

++

+

+

++
+++

+

+

++
+

+
+

+

++

++
+

++

+

++
+
+

+
+

+
+
++
++
+

+

++

+

+
+

+

++
++
+
+

+

+

+
+

+
+

++

+

++

++

+

+

+

+
+
+
++

+

+

++
++
+

+

+

+

+

+

++

+

++

++
++

+

+

+

+
+
++

+

+
++

+++

+

+

+
+
+

+
++

+
+
+
+
++

+

+

+

+++

+
+

+

++
+

+

+
+

+

++

++

+

+

+

+

+
+
++

+

+
++
+

+

+
+

+

++++
+
+

+

++
+
+

+

+

+

++
+

+
+
+

+

+++

+
+
+

+

+

+
+
++
+

+

++
++

+
+

+
+

+
+

+
+
+

++
+
++

++

+++

+

++
+

+
+
++
+

+

+

++

+

+++

+

+
++
+
+

++

+

+
+
+

+

+

+

++
+
++

+
+

+

+

+++
+

+

+++
+
+

+

+

++
+
++

+
+

+

+
+

+
+
+
+

+
+

+

++

+

+

+

++
++
+

+

+
++
++

+

+

+

+++
+

+

+

+
+
+

+
++

+

+
+
+

++
+

+

+
+
++
+

+
+

+

+

+
+

++

+

+

++
+

+

+
+

+

+++++
+

×

××
××
×

×

×
×
×
××
×
×

××

×
××
×

×

××
×

×
×

×

×

×
×

××

×
××

×
×
×

×
×

××

××
××
×××

×

×××

××

×

×

××

×
×

×
×

×
××
×
×

××

××
×

×
×
×

×

×
×
×

×

×
×
×

××
×

×

×
×

×

×
×
××
××

×

×××

×
××

×

×
×
×
××
×
×

×
××
××
×

×

××××
×
×
×

×

×
×

××
×
×

×
×
××
×
×

×

××

×

×

×××

×

××

××

×
×

×

×

××
××

×

×

×
××
××
×

××

×
×

×

×
×

××
×
×××
×

××

××

××
×

×
×
×
××
×
×

×
××
××

×
×

×
×××
×

××

×

××
××
×

×

×

×
××

××
×

×

××
××

×

×

×

×

×
×
×
×
×

××
××
××

×

×

××
×××
×

×

×××

××

×

×
×
×

××

×
×

×

×
×
×
×
××

×

××
×
×
×
×

×

×××
×
×

×

×
×
×
×

×

×
×

××
××

××
×

×

××

×××
×

×
×××
×

×

×

×

×

×
××
×
×

××
×
×
×
×
×

×

×
××
×
×

×

××
××

×

××

×
××
××

×
×

××
×

××
×

×

××
×
×
××

×

×

××

×
××
×

×
×
×

×
××

×

×

××
××
×

×

×
×

××
××
×

××××
×

×

×

××
×

××
×

×

×
×
×

××

×
×

×

×××

×

×
×

×
×

××
×

×
×

××

×
×
××
×

×
×××
××
×

Figure 4. Skylake cycles for the CSIDH-512 action using velusqrt-magma.

6657626870
7098954330
7576818552

5710830916
6052768760
6437597336

+
+

+

+
+

+

+

+
+
+

+

+++

+

+
+

+++
+

++

++

+
+

+

+

+

+

+

++
+

+

+

+

++
+
+

++
+
+
++

+

+

+
++

++
+

+
+

+

+
+++

++
++

+

+
+

+

+
++

++

+

+

+

++
+

+

+

+
+
++

+

+

+

+++

+
+

+
+

++

++
+
+
+

+
+
++

++
+

+

++
+

++

+

+

+

+

+

+

+

+

+

+++
++

+

+

+
+

+

+
++

+

+
+

+
++

+

+
+

++

++

+

+++
++
+
+

+

+
+

+
+

+
+

+

+
+

+

+

+

+

+++
+

++

+

+

+

++
+
+

+

++
+

+
+

+

+

+

+

+++

+

+

+

+
+
+

+
+
+

+
+
+

+
+
+

+

+

+

++
+

+
+

+

++
+
+
++

+
+

+
++
+

+

++
++
+

+
+

+

+

+
+
+

+

+

+

+
+
+

+

+
+

+

+
+
+

+

+
+

+

+
+

+
+

+

+

++
++
+

++

+

+

+
+
+++

+
+

+
+

++

+

+
++
+

+
+

+

++
+

++
++

+

+
+
++

+
+

+

+

++
+

++

+
++
+

++
+

++
+

+
++

+

+

+

+
+

++

+

+

+

+

++

+

+

+
+
+
+
+

+

+

+++

+
+
+

+

++

+

+
++

+

+

+
+
+
+++

+

++

+

+++

+

+

+

+++
+

+

+
+
++

+

+

+
++
+

++

+

+

+

+++

+

+

+

+
++

+
++

+

++

++

++

+

++

+

+
+

+

+

+
+
+
++
+

××

××
×

××

××

×××
××

××
×
×
××
×

×

×
×
×
×
×

×

×

××

××
×
×

×

×

×
××
××

×
××
×××
×

×
××

××
×
×

×

×

×
×

××
×

××
×
××
×
×

×

×

×
×
×
×

×

×

××

×
×
×

×

×
××
××
×

×

×
×

×××
×
×

×
×

××
××

×

×

×
××
××
×

×

×××

×
×

×

×
×

×

××

×

×

×

×××
×

××

×

×
×××

××

×

×
×
×
××

×

×
××

×
××
×

××
×
××××

×

××
×
×
×
×

×

××

×

××

×

×
×××

××

×

×

×
×××
×
×

×
×
××
×
×

×

×
××
×
×
×

×

×
××
×
×××

××
××
×

××

×

×
××
×

××

××

××
××
×

×

×
××
×
×
×

×

××××

×
×

××

××

××

×

×

××
×
××
×

×

××
×

×××

×

×

××

×
×

×

××
××
×
×
×

×

×

××
×××

×

×

××

××
×

×
××

××
×

×

×
×
×

×××
×

×

×××

×

×

×

×

××

××
×
×

×
×
×

×
××
×

×
×
×
××
×
×

×

×
××

×

××

×

×
×

××

×
×

×

××
××
×

×

×××
××

×

×

××
×

××
×

×

×
×
×
××
×

×

×

××
×
××
×

×

×

×
××
××

×

×
×

×

××
×

×
×××

××
×

×
××

××

×
×

×

×

×
×

××
×

×
××
××

×
×

××
×

×
×

×
×

××

××
××
×

Figure 5. Skylake cycles for the CSURF-512 action using velusqrt-magma.

313025614
334792870
357265234

296837404
318409802
341108192

+++
+++++++
++++++++++++
++++
+++
+

+++++++++
++++
+
+

++++++
+++
+++++
+
++++
+
+++++
++
++

+

+++++++++++
+
++
+

+++
++
+++
+++
++
++

+++++++
+++++++
+

++++
+++
++++
+++
+

++++++++
++++++
+

+++
+++
++++
++
++
+

+++++++++++
+++
+
+++
+++++++
+++++

++++++++
++++
+++

++++++++++
++++
+
+++++++
+++++
++
+

++
+++++
++++
+
+
++

+
++++
+++++++
++
+

+
++++++++
+++
+++

+++++++
++++
++++

+++
+++
++
+++
++
+
+

++++++
++++++
+++

++++
+++++++
++
+
+

+++
+++++++
++
+++

++++++++++
+++++

++++++
++++
+++
+
+

++
+++++
++
++
+++
+

+++++++++
++++++
++++++
+++++
++++

++
++++++
++++++
+
+++++++
+++++++
+

++
++++++
++++
++
+

++++
+++++++
+
++
+

++++
++++++++++

+

+++++
+++++
++
+++

+++++
++++
+++++
+

+++++
+++++
++++
+

++++++++++
+++++

+++++++
+++
++
+
++

++++++
+++++
++
++

+++++++
++++++
+
+

++
++++++
+++++
++

++++++
+++++++
++

+++++++
++++
+++
+

++++++++++
++++
+
+++++++++++
+++
+
++++++++
++++++
+

+++++++++
+++++

+

+++++++++
++
+++
+

+++++
++++++
++++
+++++++
+++++
+
+
+

+++++++
++++++
+

+

++++++++++
++
+++
+++++
++++
+++
+++

++++
+++
+++++
++

+

++++
+++++
+++++
+

++++++
++++++
+++
+++++
++++
+++++
+
+++++
++++++++
++

+++
++++
++++
+++
+

++++++
+++++
++
+
+

++++++
+++++++
++

+++++++
+++++++
+

++++++++
++++++
+
+++++
++++++
++++

×××××××
××××××
××
×××××××××
×××××
×

×××××××××××
×××
×

×××××××
××××
××
××

×××××××
××××
×××
×

×××××××
××××
×××
×

×××
×××
××××××
×
××

×××××
×××××××
×××

×××
×××××××
×××
××
×××××××××××××
××

×××
××××××××
×××
×

×××××××××××
×××
×
×××××××××
××××××
×××××××××
××××
××

××××××××××
××××××××××××××××
××××

××
××××××
××××
×
××

××××
××××
×××
×××
×

×××××××
××××××
×
×

×××××××
××××××
××

××××××
××××××
××
×
××××××××××××
×××
×××××××××
×××××

×

××
×××××××
×××××
×

×××××××××××××××××××××××××××
××
×

×××××
×××××××
××
×

×××××××××××
××××

××××××
×××××××
×

×

×××××××
××××
×
×
×
×

××××××
××××××
×××

×××
××××××××
×××
×

×××××××
××××
××
×
×

××××××××××××
×××
××××××××
×××××
××

××××××
×××××××
×
×
×××××××××××
××
××

×××××××××××
××××

××××
×××
×××
×××××

××××
××××××××
××
×

×××××××
××××××
×
×

××××××
××××
××××
×

×××××××
×××××××

×

××××
××××××××
××
×
××××××××××××××
×
×××××××××××
×××××××××××××××
××××××××××××××
×××
×

×

×××
×××××××××
×××
×××××××××
××××××
×××
×××××××××××
×

×××
××××××××
××

××

××××××
×××××××
×
×

××××
××××××
××××
×

×××××××
×××
××××

×

××××××
×××××
××
××

×××××
×××××××××
×
×××××××××
××××
×××××××××××××××
×××××××
××××××××××
××××××
××××××××
×
××××××
×××××××××

××××××
××××
××××
×

××××××
××××××
××
×

×××××××××××
×××
×

Figure 6. Skylake cycles for the CSIDH-512 action using velusqrt-flint.

293801222
313659026
326741956

285843060
305320816
317489062

+++++++++++
+++
+
+++++++++
++++
++

++++++++
+++
+++

+

+++++++++++
+++
+
+++++++++++
+++++++++++++
++++
++

++++++++
++++++
+

+++
++++++++
+++
+

++++++
++++++++
+

+++++++
+++++++

+

++++++++++
+++++
+++++++
+++++
+++

++++++++++++
+++++++++++
+++
++++

+++++++
+++++++
+

++++++++++
+++++

+++
++++++++++
++++++++++++
++++
+

+++++
++++++
++
++

+++++++++
++++++++++++++++++
++
+

+++++++++
++++
++

++++++
++++++++
+

+++
++++++
++++
++

+++++++++
+++
+++

++++++
++++++
++
+

+++++++++
++++++
++++++++++++
+++
+++++
++++++
+++
+

++++
+++++++++
++

++++++++
++++
+
++

++++
+++++
+++++
+

+++
++++++
+++
++

+

+++++++++++
+++
+

++++++++
+++++
+
+

+++++++++
++
++

+

+

++++++++++
++++
+

+++++++
+++++
++

+

+++++++
+++++++
+

+++++
++++++++
+
+

++++++++++++
++
+

++++
++++++
+++++
+++++
++++++++
++

+++++++++++
+++
+
+++++++
+++++++
+

+++++++
++++++++++++++++++
+++++
+++++
+++++
+++
+

+

++++
++++++
+++++

+++++++++
+++++
+

+++++
++++++
+++
+

++++
+++++++
++++
+++++
+++++++
+++
++++
+++++++++
+
+

++++++
+++++
+++
+

+++
+++++
+++++
+

+

+++++
+++++
+++++++++++++++
+++
++

++++++
++++++
+++

+
++++
+++++++
+
+

+

++++++
++++++
++
+

++++
++++++++
+

+

+

+++++++
++++++
++
+++++
+++++++
++
+++++++++++++
++
+

××××××××
××××××
×
××××××××
××××××××××××
×××××
×××××
××××××××××××
×××××××××××××
××××××××××××××××
××××
××××××××
×××××××
×
××××××××
×××××
×

××××××
××××××××
×
××××××××
××××××
×
××××××××××××××
×
×××××××××
××××
××
×××××××××××××
××××××××××
××××××××××××
×××××××××
×

×××××
×××××××
×××

××××××
××××××
×××
××××××××××
×××××
××××××
××××××××
×
××××××××××××
×××××××××××××××××
×××××××××××
×××××
×××××
××××××××
××

××××××××
×××
×××
×
××××××××××××
×××
×××××××
×××××
×××
××××××××××××××
×
×××××××××××
××××××××××
××××××
××
×

××××××
××××××
×××

×××××××××
×××
×××

×××××××
×××××××
×
×××××××
××××××
×
×

××××××××××
××××××××××××××××××
××
×××××××××××××
×

×

×××××××××××
××××
×××××××××
××××××
××××××××××××
××
×

××××××××
×××××
××
××××××××××××
××
×
×××××××
×××××××
×
××××××××××××××
×
×××××××××
××××××××××××××××××
×××
×××××××××××××
××
××××××××××
×××
××

××××××××
×××××
×

×

××××××××
××××××
×
×××××××
×××××××
×
××××××××
×××
××××

×××××××××××
×××
×

×××××××××
××××××
××××××××××
×××××
×××××××××
××××××××××××××××
××××
×
××××××××××
×××××
×××××××××××××××××××××××××
×××
××

×××
××××××
××××
×

×

××××××××××
××××
×

×××××
×××××××
××

×

×××××××××××××××××××××××××
×××××
×××××××××××
××××

Figure 7. Skylake cycles for the CSURF-512 action using velusqrt-flint.

• Observe that Q(1) and Q(−1) are self-reciprocal quadratics. Speed up
multiplication of self-reciprocal polynomials, exploiting the similarity of
this problem to the problem of multiplying half-size polynomials.

FASTER COMPUTATION OF ISOGENIES OF LARGE PRIME DEGREE 21

115313652
121411384
128499534

113677484
119995936
126910804

++++++
+++++
++++

+++++++
+++++++
+
+++
+++++++++
++
+

+++
+++++++
+++
++

++
+++
++
+++++
+
++

++
+++++
++++++
++

+++++++++
+++++
+
++++++
++++++++
+
++++++++
++++
+++

++++++
++++++
++

+

+++++++++
+++
+++

+
++++++++
++
+++

+

+++++++
++++++++
++++++
++
+++++
+
+

++++++
+++++++
++

++
+++++
+++++
++
+
+++++
++++
++++++

++++++
+++++++
++

+
+++
++++++++
+++

+++
+++++++
++++
+
++++++
++++
+++
++

+
++++++
+++++
+

++

+++++
++
+++++
++
+

+++
++++
+++++
+++
+++++++
++++
+
+++

+++++
++++++
++++
+++++++
++++
++++

++++
++++++++
+++

++++++
++++++++
+
+++++++
++++++
++

+++++++
++++
+++
+

+++++
++
+++
++
++

+

++++++
+++++
++
+

+

+++++
++++++
++++

+++
++++++
++
++++

+++++++++
+++
+++
++++++++
++++
+++

++++++
++++++++
+

++++
+++++++
++
+
+

+++++++
++
++
++
++

+
++++
++++++
+
++
+

+++++++
++++++
++

++
++++
++++++
+++

+++
+++++++
++++
+

+++++
+++++
+++++++++++++
+++++
+
+

++++++
++++++
+++

+++++++
++++++
++

++++
++++++++
+++

+++++
++++
+
+++
++

+++
+++++
+++++
+
+

+
+++
++++
++
+++
++

++++
++++++++
+
+
+

++++
++++++
++++
+

+++
++++++
+++
+
+
+

++
+++++
++++
++
+

+

++++
++++++++
+++

++++
+++
++++
+
+
++

+
++++
+++++++
++

+

+++
+++
+++
++++
+
+

++
+++++++
++
++
++

+++
++++
+++++
+
++

+
++++++
++++++
+++++++
+++
++
+++
++

+++++++
+++++
++
+

×××
××××××××
×××
×
××××××××
×××××
××
×××××××××
×××
××

×

××××××
××××××××
×

××××
×××××××
××
×
×

×××××××
××××××
×

×

×××××××××××××
×××××××××××××
×××
×
××××××
××××××××
×
×××××
×××××××××
×
××××××××
×××××
××

×××××
××××××
××
××

××××××××
××××××××××××××××
×××××
×

××××
××××××××
×××

××
×××××××
××
××××

×××××
×××××××
×××
×××××××××××
××××
×××××××
××××××
×

×

××××××
×××××
××××××××××××××××
×
××

××××
××××××
×××××

××
××××××
××××
××
×

××××××××
×××××××
×××××××××××
×××
×

××××××
××××××
××
×

××××××
×××××××
××

×××××××
××××××
××

××××××
××××××××
×
×××××××××××
×××
×

×××××××
×××××
××
×

××××
××××××
×××××
××××××××
×××××
××

××××××××
×××××
××

×××××
×××××××
××
×
××××××××××
××××
×
×××××××××××××
××
×××××××××
×××
××
×

××××××××
×××××
××

×××××××
××××
×××
×

×××××
××××
××××
×

×

××××××××××××
××
×

××××××
×××××××
××

××××××××
×××××××
××××××
××××××
×××
×××××××
××××××
××
××××××××
×××××××
××××××××
×××××
××

×××××××××
××××
××

×××××
×××
××××××
×

×××××××××
××××
×
×

××××××
××××
×××
×

×

××××××××
×××××
××
××××××××
××××××
×
×××××××××
×××
××
×

×××
××××××
×××××
×

××××××××××
×××××

××××
××××××
××
××
×

××××
×××××××
××××

××××
××××
×××××××
×××××××
×××
×××
××

××××××
××××
×××
××

××××××
××××
××××
×
××××
××××××
××××
×
××××××××
×××
×××
×

Figure 8. Skylake cycles for the CSIDH-512 action using velusqrt-asm.

749765588
788777194
833140632

685974488
719084288
760035568

++++++++
+++++
+
+

++++
++++
++++
+
+

+

+++++++
+++++++
+

++
+++++++++
++
+

+

++++
+++++
+++++
+

+++
++++++
++
+++
+

+++++
++++
+++++
+

+++
+++++++
++
++

+

++
++++++
+++++
+
+

+++
+++++
+++++
++

++++++++
++++
+++

++++
++++
++
++
+
+
+

++++
++++++++
++
+

+++++++
+++++
+++

++++
++++++
++
++
+

++++++
++++++
++
+

++++
+++++
+++
++
+

+++
+++
++++
+++
+

+

+++++++
++++
++
++

+++
+++++++++
+
+

+

++
++++++
+++++
++

+++++++
++++
++++

++++
+++
++++
++
++

+++
++++
+++++
++
+

++++
++++++++
+++

++++++
++++
++
+
+

+

+
++++++++
+++++
+

+
++++
+++++
++++
+

+++
+++++
++++
++
+

+++
+++
++++++
+
+
+

+++++
++
++++
+++
+

++
++++++
++++++
+

++
++++++++
+++
+
+

+++++
+++++++
+++

++
++++++++
+++
+
+

+++
++++++++
+++
+

+++
+++++
++++
++

+

++
++++++++
++++
+

+++
+++++
++
+
+
+

++

++++++
++
+++++++

+++++
++++
+++++
+

++++
+++++++
++
++

++++
++++
+++++
++

++++++
++++++
+++

++++++
++++++
++

+

+
+++++
++++++
+++

+
++++++
+++++++
+
++++++++++
+++
++
++++++
+++++
++++

++
++++++
++++++
+

++
++++
+++++++
++

+
+++++
++++++
++
+

++
+++++
++++
+++
+

+++
+++
+++++
+
++

+

+
++++++
+++
+++
+
+

+++
++++++
+++++
+

++++++
++++++++
+

+++
+++++
+++
++
+

+

+++
+++++
++
+++
+
+

++
++++
+++++
+++

+

+++++
++++
++
++
++

++++
++++++
+++
++

++++
++++
+++
+
+++

+++++
+++++++
+++
+++++
++++++++
++

××××××××
××××××

×

×××
×××××
×××××
×
×

××××××××
××××××
×
×××
××
××××××
×××
×

×××
×××××××
××××
×

××××
××××
××××
××

×

×××
××××
××××
××××

×××
×××××
××××××
×
××××××
×××××
××××

×××××
××××××
×××
×

××××
××××××
×××××

××
×××××
×××
××
×
×
×

××××××
×××××××
××

××××××××
××××××
×

×××
××××
×××××
××
×

×××××
××××××
××
××

×
××××××
×××××××
×

××××××
××
××××
××
×

×××××××××
××××
××

××××
××××
××××××
×

××
××××××
××××
×××

×××
××××××××
×××
×

×××
××××
×××××
×
×
×

×××××
××××××
×××
×

×××
×××××××××
××
×

××××××
××××××
×××

×
××××××××
××××
×
×

×
×××××××
××××
××
×

×××
×××××
×××××
××

×××
××××××
×××××
×

××
×××××
×××××
×
×
×

×××
××××
×××××
××
×

×
×××××
×××××
×××
×

××××××××
×××
××
××

×××
××××××
×××
××
×

××××××××
××××
×××

××××
×××××
×××
××
×

××××××
××××××××
×

××××
×××××
××
××
××

×××
××××××
××××
××

×××××
××××××
×××
×

×××
×××××××××
×××

××××××
××××
××××
×

×××××××
××××
×××
×

××××××
×××××
××××
××
×××××××××
××
××

××××
××××
×××
××
×

×

×
×××××××××
××××
×

×××
×××××××××
×××

××
×××××××
×××
×
×

×

×
××××××
×××××
××

×

××××
××××××
×××
××

××
××××××××
×××
××

××××
××××××
××××
×

×××
××××
××××
××
××

××××
×××××××××
××
××××××
××××××
×××

××
×××
×××
×××××
××

××
××××
×××××××××

×××××
×××
××××
×××

××
××××××
××
××××
×

××××××××××
×××
××

××
×××××××
×××
×××
××××
××××××××××
×××××××××
××××
×××

Figure 9. Skylake cycles for the CSIDH-1024 action using velusqrt-asm.

440727
461234
483944

408797
427357
449428

++
++
+
++

+
+
++++
+

+
++
+++
+

+++
+++++
++
++
++

+
+++
+
+++++++
+
+

++
+++
+
+

++

+++

+
+

++
++
+
+

+

+++
+
++
+

+++
++++

+
+++
++

+

+
+++

++
+

++++++
+

+
++
++
++
++++
+++

+++++
++

+++
++++++
++++
+
+++++
+
+

++
++++
+
+++
+++
+

+
+
++
+
++

++
+++
++

+
++++
++

++
++
+++

++
++
+
+
+

+++++
+
+

+
+++
+++

+++++
+++
++
++++

++++
+
+
+

+
++++
++

++++
+
+
+

+
++
+
++
+

++
++++
+
++++
+

++

++++

+
+
+

+++
+++
+

+++
++++++
++++
+

+++
+
++
+

+++++
++
+++
+++

+

+++
+++
+

++++++
+

+
+++++
+

+
+
++++
+

+++
+++
+

+++
++
++
+++
++
+
+

++
++
+
++

++
+++
++

++++
++++++
+++
+
+++
++++

+++
+++
+
+
++
++

++

++
+++
++
++
++
++
+

+
++++
+

+

++
++
+++
+
+++
+
++

++
++
+++

×××
××××

×××
×××
×

×××
×
××

×

×××××
×
×
×××××
××
××
×××
×

×

×××××
××

××××
××
×

×
×××

×
××

××××
×
××
××
××××
×
××××
×××
×××
×××
×

×××
×××
×

××××××
×
××
×××
×

×

×××
××××××××
×××

××
×××
×
×

××××
×××
×××
×××××××
××××
×××
×××××××××
×
×

××××
××
×

×××
×××

×

××
×××
××

×××
××
×

×

××××
××
×
×××××
××
×××
××
××
×××××
××
××××××

×
×××
××××
××××
××
×

×××
××

×
×

×××
×××
×

××
×××
××

×
××
×
×××
×××××××

×××××
×
×

×××
××××

××
×
×××
×
××××××××××××
××

×××
×××
×

××××
×××

×
×××
×
×
×

×××
×××

×

×××××
××
××
×××××

×××
×××
××××
××××

××
×
×××
×

×××
×××
×
××××
×××
×××××
××
××××
××
×
×××
××××
××××
×××

×××
×××

×

××××
××
×
××
×××××××
××
×
××

××
×××
×
×

Figure 10. Multiplication counts for the CSIDH-512 action using velusqrt-asm.

647250
677328
703626

559933
583675
607018

+++++

++

++++
++++++
+++
+

++
++++
+
++++
++

+

+
+++
+++

+++
++++
+++++
+

+

++
+++
++

+

+++++
+

+
++
+++
+

+
++++

++
++++++
+
++++
+++++++
++++++
++++
+++++
++
++++++

+

+
+++
+++
++
+++
++

+++
+++
+

+
++++
+
+

++
+
+++

+

++++
+
++

+++
+
+
++

+++++
++

+
+++
++

+

+++++
++

+++
++
++++
++++

+

+++
++
++

+
+++
++
+

+
+++
+++

++
+
+++
+

++
+++
+

+

+++
++++
++
+++
++
+++
+
+

++

++
++++
+

++++++
+
+++
++++
++++
++

+

++
++
++
+

+
+
++++
+

+
+++++

+

++
++++
+
+
++++

++

++++
+
+
+

++
++++
+
+++
+++
+

+
++++
+

+

+
++
+++
+
+
+++++
+
++
+++
+
+

++
+++
++

++++

++

+

+
+++
++

+

+
++
+++
+

++
++++

+

+++++
+++++
++
++

+
+++++
+

+
++
++
+
+

++
++
+

+

+

++++
+
+
+

×××××
××

×××
××
×

×

××
××
××
×

×××
××
×
×

×××
×
×××

×
××
×××
×

×××
×××
×
××
××
××
×
××××
×
××
×××
××××

×××××
×
×

×××
××
×

×

×××
×××
×
××
××××
×

×××
××××××
×××××
×××
×××
×
×××
××
××

××
××
×
××

×
××××
××

×××××
×
×

×××
××
××

×
××
×××

×

×××
××××
×××××
××

××
×
××××

×
×××
××
×

××
××××
×

×××
××

××

×××
××××
××××
×××

×
×××
××
×

×××
×××
×

××
×××
×
×

××
×××
××

×
××××
×
×

××××
××
×

×
××××
××

××××
×××
×××
××××

××
××××
×
×××
×××
×

××
××
×××

×
×××
×
××

×
×××
××
×

×××
×××
×

××
××
×××

×××
××
×
×

×××
××
×
×

×××××
×
×

××
××
×××

××××
××

×

×××
×××
×
×
××××
××

××
×××
××

×
×××
×××

×××××
×

×

×××
××××

××
××
××
×

××
×××

××

×××
×××
×
×××
××
××

××××
×

××

××××
××

×

×
××
×
×
××

Figure 11. Multiplication counts for the CSIDH-1024 action us-
ing velusqrt-asm.

• Use scaled remainder trees (see [12], [11], and [3]) whenever those are faster
than traditional unscaled remainder trees. Precompute the product trees
used inside these remainder trees.

• Speed up polynomial divisions, especially by precomputing reciprocals of
tree nodes. See [31] for various techniques to save time in reciprocals; most
of these techniques are not incorporated into our current software.

• Speed up polynomial multiplications, including polynomial multiplications
that produce only a stretch of output coefficients. Divisions use “low” and
“high” products, and scaled remainder trees use “middle” products.

22 DANIEL J. BERNSTEIN, LUCA DE FEO, ANTONIN LEROUX, AND BENJAMIN SMITH

• Merge reductions across field multiplications: e.g., compute ab+ cd by first
adding the unreduced products ab and cd and then reducing the sum. This
needs a more complicated field API; our current software does not do this.

It is well known that multiplying two n-coefficient polynomials costs just 2n− 1
field multiplications (in large characteristic), since one can interpolate the product
from its values at 0, 1, . . . , 2n− 2. Divisions by various positive integers inside this
interpolation can be replaced by multiplications by various positive integers, and
thus by additions, since isogeny outputs are represented projectively. However,
more work is required to optimize polynomial multiplication in metrics that go
beyond multiplications. There is an extensive literature on this topic, including
many techniques not used in our current software.

At a lower level, reducing the cycles for field operations is helpful in any cycle-
counting metric. At a higher level, using one or more field divisions could be helpful
if divisions are fast enough compared to the size of `. Furthermore, #I and #J
should be chosen in light of the costs of all of these operations. Presumably the
optimal #I/#J converges to a constant as `→∞, but it is not at all obvious what
this constant is for any particular metric.

Department of Computer Science, University of Illinois at Chicago, USA

Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

Email address: djb@cr.yp.to

IBM Research Zürich, Switzerland

Email address: Luca.De.Feo@zurich.ibm.com

DGA, Inria and École Polytechnique, Institut Polytechnique de Paris, Palaiseau,

France

Email address: antonin.leroux@polytechnique.org

Inria and École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Email address: smith@lix.polytechnique.fr

	1. Introduction
	1.1. Model of computation

	2. Strassen's deterministic factorization algorithm
	2.1. Factorization via modular factorials
	2.2. Modular factorials as an example of the main problem
	2.3. An algorithm for modular factorials

	3. Evaluation of polynomials whose roots are powers
	3.1. A multiplicative version of modular factorials
	3.2. An algorithm for the multiplicative version of modular factorials
	3.3. Structures in S and f
	3.6. Optimization

	4. Elliptic resultants
	4.1. The elliptic setting
	4.2. Biquadratic relations on x-coordinates
	4.5. Index systems
	4.8. Elliptic resultants
	4.10. Elliptic polynomial evaluation
	4.14. Irrational generators
	4.15. Other functions on E
	4.16. Abelian varieties

	5. Computing elliptic isogenies
	5.1. Evaluating isogenies
	5.2. Computing codomain curves

	6. Applications in isogeny-based cryptography
	References
	Appendix A. Concrete costs and cross-overs
	A.1. Choice of function to compute
	A.2. Choices of cost metric
	A.3. Results for -isogenies
	A.4. Results for protocols
	A.5. Techniques to save time inside the -isogeny algorithm

